欢迎来到我们的支持中心
< 所有主题
印刷品

Keyword clustering in SEO

关键词 clustering is a technique used by 搜索 引擎优化 (搜索引擎优化) specialists to categorise target search keywords into groupings (clusters) that are relevant to each web page. After doing keyword 研究, search engine specialists organise keywords into tiny groups and distribute them across the website\’s pages in order to get better positions in search engine results (SERP). Clustering keywords is a totally automated procedure that keyword clustering programmes conduct.
The concept and first 理念 were coined in 2015 by Alexey Chekushin, a Russian search engine optimization 专家. In the same , Russia produced the SERP-based keyword clustering programme Just-Magic. The keyword clustering tool is accessible in the English language and was created in the summer of 2015 by the Thailand-based 业务 Topvisor. A year later, Spyserp, an Estonian business, launched a similar technology. The primary distinction is that all 语言 are clusterable there.

聚类技术

  • Regardless of the search engine or custom parameters, keyword clustering is based on the 顶部 ten search results (TOP-10). The TOP 10 search results are the first ten results shown by a search engine for a certain search query. In the majority of situations, the TOP-10 corresponds to the first page of search results
  • The keyword clustering methodology as a whole consists of four phases that a tool must accomplish in order to 集群 keywords:
    该程序从列表中一个一个地提取关键词,并将它们作为搜索查询提交给搜索引擎。它检查搜索结果,提取前10个结果,并将它们与列表中的每个术语进行比较。
    当一个搜索引擎对两个不同的关键词产生相同的搜索结果,并且这些结果的数量足以触发聚类,这两个关键词就会被归为一组(聚类)。
  • 聚类水平是指搜索结果中触发关键词聚类的最小点击数。聚类水平是可以配置的,大多数程序在聚类前的设置中允许这样做。在聚类之后,聚类水平对每个组内的组和词的数量有影响。聚类水平越高,创建的组就越多,每组内的术语就越少。
  • This is because there is a minimal likelihood of finding nine to ten matched papers on the search results page (it would include almost all pages in the TOP-10 of search results). On the other hand, clustering at level 1 or level 2 will result in the formation of a few groups, each of 其中 will include a large number of keywords. There are few exceptions, but they are few and far between.
    If a tool does not identify any matching URLs in the first ten results of a search, these keywords are separated into their own category.
  • 除了聚类水平之外,还有许多不同形式的关键词聚类,每一种都会影响到组内术语之间的关联方式。与聚类水平类似,关键词聚类类型可以在聚类前指定。

软体类型

  • 关键字聚类工具搜索关键字列表,然后确定哪个关键字是最受欢迎的。最受欢迎的关键词是收到最多的搜索。然后,一个工具将所选关键词的前10个搜索结果与另一个关键词的前10个搜索结果进行比较,以确定匹配的URL的数量。如果观察到的数量符合设定的分组水平,那么这些关键词就会被分组到一起。
    因此,一个组内的所有术语将与具有最大搜索流量的术语相关联,但不一定彼此相关联(不一定彼此有匹配的URL)。

谦逊的

  • 一个关键词聚类工具搜索关键词的集合,然后选择表现最好的词。然后,一个工具将所选关键词的前10个搜索结果与另一个关键词的前10个搜索结果进行比较,以确定匹配的URL数量。同时,一个工具将所有的术语进行相互比较。如果观察到的相同搜索结果的数量等于设定的分组水平,那么这些关键词就会被分组到一起。
  • 因此,一个组内的每个词都会有一个对应的关键词,并有一个匹配的URL或该组内的一组URL。然而,两个随机的关键词组合并不总是有匹配的URL。
  • A keyword clustering tool searches the list of available keywords and then selects the one with the greatest 搜索量. Then, a tool compares the TOP 10 search results for the chosen keyword to the TOP 10 search results for another keyword in order to determine the number of matched URLs. Simultaneously, a tool compares all keywords and their corresponding URLs in the discovered pairings. The keywords are grouped together if the observed number of identical search results equals the set grouping level.
  • 因此,一个组内的所有术语都将通过使用相同的URL进行关联。

历史

  • As a critical component of the website optimization process, SEO specialists 关键字研究发展 a of target search phrases that they utilise to promote their website and achieve better search engine ranks. After compiling a list of keywords associated with the website\’s 内容, they partition the list into smaller groupings. Each group is often associated with a certain page on the website or a certain subject. Initially, SEO specialists were required to manually arrange the keyword pool, choosing one term after another and discovering probable clusters.
  • 虽然这可以在谷歌Adwords关键词工具的帮助下完成,但仍然需要大量的人力。我们需要一种自动方法,将术语自动划分为不同的群组。
    Keyword grouping based on lemmas
  • 在关键词聚类出现之前,搜索引擎优化专家在词组化过程的基础上创造了关键词分组技术。词义是指一个词的词根或词典形式(没有转折词尾)。词义化是一个语言学概念,指的是将一个词的许多转折形式组合在一起的行为,以便将它们作为一个单一项目进行研究。

Lemmatization是搜索引擎优化中的一个四步法。

  • 从列表中逐一选择关键词;将其分解为词组;找到类似的词组;并将具有匹配词组的关键词归为一组。
    因此,SEO专业人员会收到一个关键词分组的列表。某个组中的每个词都有一个词组,与该组中所有其他关键词相匹配。

基于SERPs

  • 与基于词法的关键词聚类不同的是,基于SERP的关键词聚类产生了可能没有形态匹配但有搜索结果匹配的术语分组。它使搜索引擎专家能够创建一个与搜索引擎所支配的模式密切相关的关键词结构。
  • 俄罗斯SEO专家Alexey Chekushin在2015年提出了术语聚类的软、硬类型以及一般算法。同年,他设计并推出了一个自动术语聚类方案。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

目录